XVIII- Note on Bulimulus (Drymans) citrinellus, Pfr., and scitulus, Reeve. By líligi C. Fuliton.
B. citrineletes was first published by Pfeiffer in his Monog. Helic. Viv. vol. vi.p. 114 (1868), as a "var.?" of B.scitulus, Reve, with the following description:-"Anfractibus paulo convexioribus, strigis spadiceis mullis." The latter part of this is translated in 'Tryon's 'Manual,' vol. xi. p. 271, as having "no scarlet streaks"; this should have been "no brown streaks." As a matter of fact, specimens which I believe are properly referred to Pfeiffer's citrinellus have very pale orange or scarlet stripes, but no brown ones as seen in scitulus.

I have before me a large number of both scitulus and citrinellus collected in $18!4$ by Mr. Baron, the former at Cajamarca, Peru, and the latter at Cajabamba, Peru. Among the specimens of citrinellus are some answering to Pfeiffer's description, whilst others are ornamented with orange and dark brown streaks, so that Pfeiffer's description does not suffice for the material now under consideration. Citrinellus is easily separated from scitulus; the latter in the adult state is a smaller shell, with much narrower and more numerous streaks, generally narrower in form, with its peristome more contracted at its anterior or basal area, and its whorls increase more rapidly than in scitulus, consequently the body-whorl is obviously larger.

Pfeiffie's description of the whorls of citrinellus as "paulo convexioribus" is scarcely borne out by the majority of the specimens before me; if there is any difference worth mentioning, I should say the body-whorl of scitulus is the more convex of the two, but the specimens vary in this respect.

The daker form of B. citrinellus is well illustrated in 'Tryon's 'Manual,' vol. xi. pl. xlvii. fig. 17; the figure 16 on the same plate is a not very faithful copy of the excellent figure of Reeve's scitulus as given in the Conch. Icon. pl. xcrii. fig. 513.
XIX. - Notes on Trematode Parasites of the Cockle (Cardium edule) and Mussel (Mytilus edulis). By William Nicoll, M.A., B.Sc., Gatty Marine Laboratory, St. Andrews.
[Plate IV.]
In April 1903, at the suggestion of Professor M'Tutosh, I commeneed the examination of the edible cockle (C. edule)
for parasitic Trematodes, in the lope of being able to fill ups some of the gapss in the life-history of the pearl-forming Distomid of the mussel. The life-history of this parawite (Leucilhodemulrium somaterice) has been ahmost (ompletely worked out by Dr. II. Lyster Jameson*. At Diel lie lumnil the spororyst stage in the mantle of the cockle clone to the anterior border of the anterior adductor musele. At Billiers, however, he found the same stage oecurring in Tippes derussutus. From this we may conclude that the host harbouring the sporocyst stage is not constant, but varics according to lucality.

Mr. A. J. H. Russell, M.A.†, at St. Audrews in 190: (. pril-July) examined a considerable number of both large and small mussels from the beds at the mouth of the Eden. He fomed pearls in 45 per cent. of the large, and 21 per cent. of the small mussels. These numbers lall short of those obtained by Dr. Jameson, who found almost every specimen infected. 'This is probably due to the comparative unsuitability of the locality. Mr. Russell apparently did not determine whether the parasite cansing the pearlformation in the Eden mussels was the same as that described by Jameson, but, assuming this, I sought for the sporocyst stage in the cockle. During three months (MayJuly) sereral hundred cockles were examined and in no cate were sporocysts present in the positions indicated by Jameson, nor, indeed, in any part of the mantle-edge.

Later, however, in examining the other organs of the cockle, I met with sporocysts containing ecrearize closely resembling those discovered by Jameson in Tapes. They oceurred in one well-defined, somewhat oval-shaped mass (Ill. IV. fig. l), situated in the middle line dorsally just orer the pusterior border of the liver, but separated from that organ by a short distance ($1-2 \mathrm{~mm}$.). 'They could be best seen by removing the cockle entirely from the shell and looking down on it from above. The mass then appeared whitish, semiopratue, and of a somewhat solt consistencer. Within it the individual sporocysts appeared as yellow spots of various sizes. The dimensiuns of the mass were in some cases as large as $4 \mathrm{~mm}, \times 3 \mathrm{~mm}$. The occurrence of the sporocests in this case is thus different from that observed by Janeson in Coddinn and more nearly resembles the condition in Tapes, for while in the latter large groups were found, "there were only single, triple, or quadruple eysts" in the former.

$$
\begin{aligned}
& \text { * I'ruc. \%oul. Sue. 1002, i. p. } 110 .
\end{aligned}
$$

On microseopic cramination of a pressure preparation (Pl. IV. fig. 2), the sporocysts contanell cercarice varying in number from two to as many as fifty, while the total mmber of cercarize sometimes exceeded 250 . Inside the sporoeyst they appear of different shapes and sizes, but on being pressed out they assmue an oval outline, changing, however, with the movements of the animal.

These morements are interesting. Fully extender (textfig. a), the cercaria is spindle-shaped, and fixing itself in

Movements of cercaria.
this position by its oral sucker it begins to draw the remainder of the body up to the sucker. The anterior part expands (b), the rest remaining narrow and elongated, but this is gradually drawn forward until the whole body has the shape of a prolate spheroid (d). The ventral sucker then comes into action, the oral is released and the anterior part of the body begins to elongate until finally the spindleshape is reassumed.

The cercarize (Pl. IV. fig. 3) vary in size, the average length being about 22 mm . At the period of greatest contraction the length may be $\cdot 11 \mathrm{~mm}$., while at full extension it reaches $\because 28 \mathrm{~mm}$. The greatest breadth is about $\cdot 1 \mathrm{~mm}$.

The whole surface of the cuticle, except on the suckers, is set with small spines arranged in transverse rows, the members of each row alternating with those in the next. Of the two suckers the oral (PI. IV. fig. 3, a.s) is the larger; it is subterminal and cup-shaped, with a circular aperture. The ventral (fig. 3, v.s.) is just in frout of the bifurcation of the excretory system. The mouth opens in the oral sucker, and viewed from the side it has a triangular outline. It is continuous with a pharynx (p / h_{0}), the lumen of which has a sinall dilatation at both ends. The cesophagus is short and divides into two sac-like diverticula (diiv.). The exerctory system (ex.) occupies the major part of the body. In most
cxamples it appeass intensely hatek, hat in sume the more acetive and possibly the older, it is liefleter in colour. It consists of two wide ponches, matiner posteriorly, contimed by a narrow tube, which opens terminally by an exeretory pore.

A pair of eyes (es.) is present, one on rath side of the oral sneker. Each comsints of a suall ervetalline rod with a pigment-spot. Romnd the aperture of the oral sucher are several minute papille.
'The erenital system can larelly be made ont in the living animal, but on death, when the tissues become more opaque, a pair of testes ($t s$.) can be distinctly seen, one on cath side ol, and somewhat behind, the ventral sueker. 'They contain a mass of globular cells. F'rom eard teatis a narrow tube issuce and joins its fellow from the other side at the lewal of the sucker. From this point a single tube leads forwards and opens just in fiont of the sucker.

In addition, in the living eerearia, a momber (from 8 to 1:2) of shboular cells ($k . .5$.) can he seen in front of the ventral sucher. Thase may possibly be the rudiments of the ovary.

With rearad to the frequeney of oeenrence of the sporoC!sts, in a sample of twenty cockles recently cxamined I found every specimen infected and invariably the spororysts were situated in the same position. The cockles were not of full size, measuring on an average only 2.5 mom.

It is evident that, as the ecrearia can only perform ereeping movements, it must reach its next host in this manner. Scareh in the mud, howeser, of the mussel-beds falled to reveal the migratory stage. I have also kept a mumber of cockles and mussels tugether in a tank for a considerable time, until, in fact, the cockles died, but met with no better suceess on cxamining the mod at the bottom. It is possible that migration may ouly take place at a particnlar period of the year.

Although, in the cockle, the mantle-edge was free from sporocysts, it was, nevertheless, by no means fiee from parasites. In this case the infection took the form of momerous small globular cests (Pl. IV. fig. 4), as many as $3 \overline{5}$ being present in one specimen, although, as a rule, the number diel mot execed lo. They oceurred usmally in the immost fuld of the mantle-edge, sometimes in groups of two or three, but of tener singly, and their distribution seemed to be general. 'They were siturited in the loose comective tissue, just underneath the epidermis, but, as far as observed, their presence gatere rise to $n o$ pathological condition (execpt that there was a slight proliferation of the cells in the neighbourlood). There was no tendeney to pearl-formation romme these eyste,
althongh Herlmann * notes the occurrence of pearls in a number of cockles examined by him, to as large an extent as 8 in 95.

In the font the same eysts were found in much greater numbers, embedded beneath the epidermis in the maseular tissue. They were most numerons near the tip and were almost entirely confined to the horizontal part. Occasionally white concretions, $:-3 \mathrm{~mm}$. in diameter, were met with in the glamdular part of the foot, but these had no obrious comexion with the occurrence of the eysts.

The eysts vary from '2 1 mm . to ${ }^{2} 5 \mathrm{~mm}$. in diameter. They can be quite easily dissected out from the surrounding tissuc. The capsule is perfectly transparent and of a slightly brownish colour. It consists of three parts : the outermost is a thin membrane and is separated from the rest by a space; the middle layer is thicker than the internal, and the whole thickness of the capsule is about 013 mm . It coutains the eneysted stage of a Trematode larva. By the use of moderate pressure the capsule can be ruptured and the Distomid (PI. I V. fig. 5) set free. The anterior part is broaler than the rest of the body, somewhat spade-shaped in gencral outline and with a ridge (fig. 5, r.s.), in the form of a horseshoe, bearing spines. The whole length of the animal is $\cdot 75-8 \mathrm{~mm}$. (minimum 6 mm .). The greatest brealth of the anterior part is 19 mm ., while the rest of the body varies from $\cdot 14 \mathrm{~mm}$. in front to $\cdot 08 \mathrm{~mm}$. 'The body is flattened dorso-ventrally.

There are two cup-sliaped suckers, raised somewhat above the surface of the body. The oral sucker, situated within the rilge of spines, is smaller than the ventral, having a diameter of 065 mm . The rentral lies in the middle of the body, but nearer the posterior end, and measures 095 mm . in diameter. Both sucker's have a circular aperture.

The ridge on the anterior end carries 29 spines arranged in a single row. They are about 025 mm . long, but three at each end are shorter than the others. The ridge has rounded ends and the two terminal spines on each side seem to lie behind and below the adjacent ones.

In addition, part of the body, from what may be called the neek down almost to the level of the rentral sucker, is studded with small hooks (fig. 5, c.s.) or spinelets. There are 30 or 40 transwerse rows, and the hooks in one row alternate with those in the next, so that diagonal rows are also formed.

The mouth opens in the oral sucker and leads into a

[^0]muscular pharyn (p ho. measuring $05 \times 03 \mathrm{~mm}$. This is continned by a narrow straight cesopharus, which remains madivided motil near the ventral sucker, where it bifureates into two diverticula (Pl. IV. fig. $\overline{\mathrm{E}}$, dig.).

The exeretory system (fig. j, ex.) is well-marked. It is loaded with bead-like globules, which disappear on treatment with acid. There are two main tubes of varying wilth rimning almost the whole lenerth of the body and miting postcriorly in a vesicle whichopens terminally ly an excretory pore. Anteriorly the main tubes receive numerons short, simple branches.

On more minute cxamination an extremely narrow tubule (PI. IV. fig. 5, f.t.) ean be disecrued to the outer side of each main exeretory tube. They are provided with flame-flagella and have apparently some connexion with the excretory system, althongh their exact relation conld not be observed.

Genital organs are not yet preent, but sperm-cells are apparently developed. They occur diffusely. On rupture of the ammal by pressure these cells issuc in great numbers. They are evidently spermatozoa, for they possess a head and vibratile tail, and execute the typical spermatozoid movements.

The adult stage (PI. IV. fig. 6) of this parasite is to be fomud in the oyster-catcher (Hematopus ostralegus). I had an opportunity * of examining many of the birds that frequent the shores of the Eden estuary, but in most of them only cestode parasites were to te found. In the oystereatcher, besides the usual collection of tapeworms, several Trematories were found in the intestine. The stomach is generally full of the remains of cockles and mussels, and the gut contains numerous ersts similar to those found in the cockle. 'Towards the lower end of the intestine the desired parasites were obtained. They are not at all of frequent oceurence, but being translucent and of no great size they may easily escape notice.

The adult resembles the eneysted larra to a marked degree, the main external point of difference being the elongation of the posterior part of the body. The distance between the two suckers remains practically the same, as does the atwerage breadth of the animal, the whole length being increased to about $1: 25 \mathrm{~mm}$.

This parasite has sereral features in common with the members of the 'Trematode subyenus Echinostomum (ef.

[^1]L. buculus *, E. spinulosum \dagger, E. cchinatum \ddagger) ; for instanes, the anterior ridge with its spines, which differ only in number and arrangement, and the positions and relative sizes of the suckers. It may be classed moder this subgenus and is probably a new species s.

On firther examination and dissection of the organs and tissucs of the cockle, a number of ciliated sporocysts II (Pl. I V. fig. 7) were found, chiefly in the liver, but sometimes in comerion with the intestine-occasionally in both places in the same individual. Rarely were there more than half a dozen in one cockle, and only in abont 20 per cent, were they entirely absent. They seemed to be free, and being provided with eilia they moved about actively enough. The gencral outline of the body was oval, tapering anteriolly, but somewhat blunter posteriorly. There was some diversity in size, the largest being about 8 mm . long, with a greatest width of $\cdot 38 \mathrm{~mm}$. Small examples not exceeding $\cdot 2 \mathrm{~mm}$. were occasionally obscrved.

Two crescentic eyc-spots (fig. 7, e.s.) are present in front, and between and slightly anterior to them a pharynx is situated. Inside the sporocyst a number of globular cysts appear, usually from six to eight. Each cyst contains from two to four danghter-sporocysts (d.s.) in various stages of development. The youngest cysts, ocenring generally near the body-wall of the sporocyst towards the anterior end, appear entirely undirided and contain small globular bodies. A somewhat older stage shows a division into two hemispheres. Later these take on the character of daughtersporocrsts, two eyc-spots and cilia making their appearance. 'Towards the hinder end of the danghter-sporocyst four or five globules are seen similar to those mentioned above. Inside the eyst the minute sporocysts can be observed moving round and round, and on rupture of the parent they make their cscape and swim abont with considerable agility.

The relationship of these sporocysts to the other stages of Trematode larve found in the cockle is a matter of some difficulty. The oferrrence of the sporocysts, containing cercarie, in close proximity to the liver is somewhat suggestive of a comexion between these two stages at least.

[^2]No redia or other intermediate stage hats as yet come under my obereration.

Asam, on examination of sereral other Lamellihranchate mollusks from the neighbourlmod of the Eden, I fomm in the mussel (Mylilus cilulis) and Muctra stultorum the same eneysted parasites in the foot. They were as momerous in the mussel as in the cockle, and occurred in almost every example; esen in specimens measming only 8 mm . as many as half a dozen eysts could be counted in the foot. In Mactra they were rarer. But in Mytilus and Mactra sporoeysts did not ocen in the mantle, in the mid-dorsal line, or in the liver. 'This would appear to be a proof that the sporoeyst, in the liver, and those contaning cercarix in the mirldorsal line, are stages of the same parasite, or, at any rate, that they have no relation to the cysts in the foot.

The antecedent stages of both these parasites are as yet maknown. Examination of the mantle-cavity of the cockle and mussel displayed numerous Infusor-like animals of different kinds, some of which may prove to be the Miracillium larva*.

ENPLANATION OF PLATE 1 V. \dagger

Fïg. 1. Jiagram of cockle (removed from valves), showing situation of sporucpst mass (m.s.). L., liver ; u.c., auterior adductor ; p.a., posterior adductor: r., rectum.
Figy. 2. Pressure preparation of sporucyst mass. sp., the individual sporocysts; cer., cercaria.
Fig. 3. The cercaria, a.s., anterior sucker; e.s., eyes; ph., pharynx; oes., ce-opharus ; c.s., cuticular spines; ex., excretory system; dix., intertinal diverticula : k.s., f lobular cells; p.s., posterior sucker; ts., testis; e.r.p., excretory pore. C'uticular spines omitterd.
liy. 4. ('yst from foot of cochle, showing para-ite coiled up inside. u.s., antenior sucker; c.n., ridere of spines; ph., pharynx; e.s., excretory system; p.s., pusterior sucker; e.v., excretury vesicle; c., capsule.
Fig. $\bar{\sigma}$. Cercaria from toot of coclile. a.s., anterior sucker; ras., ridge with spines: ph., pharynx; c.s., cuticular spines: oes., ce-ophagus; dig., intestinal diverticuln ; p.s., posterior sucker: f.t., tubule with tlamo-flugella: e.r., excretory system ; e.n, excretory vesiele; ex.p., excretory pore. Cuticular spines onitted.
F゙ig. 6. Adult from intestine of oyster-cateher. Lettering same as in li, ir. $\bar{\circ}$
Fi!y. T. Sporocest from liver of cockle. ph., pharyns ; e.s., eye-spots; c., cilia: a, medivided cyst; b, cyst, later stuge; d, cyst contatining daurhter-sporocysts; d.s., danghter-spurucyst.

[^3]
[^0]: * Lancashire Sea-Fisheries Lab. Rep. for 190:3, p. 93.

[^1]: * For this I am indelted to my friends Messrs. I. M. Crair aud Arthur Mills and to Mr. . . W. Brown, of the Gatty Marine Labosatury.

[^2]: * v. Jinstow, Arch. f. Naturg. xliii. l877, p. 18.?, pl. xiii. fig. 15.
 \dagger Ibid. fir. l. 4.
 \ddagger Wed!, Wiener Sitzungsber. xxri. 18.57, pl. i. firg. 5.
 § Cf. Northumberland Sea-Fiwheries lieport, 1904, p. 82, where, in a note by Miss M. Y. Lebour, B.Sc., what appears to be the same parasite is described, but in an imperfect manner.
 - The ejurue y sts are also described in the same note.

[^3]: * I should like to note here that in the mantle-cavity of the conclale swarns of a species of Infusor of the erems Trichorlina vceurmed. 'Thes were found both swimming abont free and adhering to the mantle and foot.
 + I have to thank my friem Mr. I). D. Crair, M.. ., for propuring the drawing: which accompany thi- paper.

